The Challenges of TB Infection Control in Southern Africa

Prashini Moodley

University of KwaZulu-Natal & KZN Department of Health South Africa

Infectious Disease Cycle of Transmission

- a reservoir for the organism
- a susceptible host
- transmission from one to the other
- each of these is a target where we can prevent infections from occurring
- transmission of TB
 - droplet
 - airborne

TB control

- decreasing infectiousness of patients/ reservoir
- prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- prophylaxis for the non-infected/ susceptible host
 - vaccination
 - prophylactic medication

TB control

- decreasing infectiousness of patients
- prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- prophylaxis for the non-infected part of the population
 - vaccination
 - prophylactic medication

Infectiousness in relation to bacterial load

Infectiousness in relation to bacterial load

- fast tracking of diagnosis
 - turn a patient non-infectious through treatment
 - >decrease the number of exposed people

>decreasing the likelihood of transmission/exposure

XDR in KZN = TDR

isoniazid	R
rifampicin	R
pyrazinamide	R
ethambutol	R
streptomycin	R
ethionamide	R
ofloxacin	R
moxifloxacin	R
kanamycin	R
amikacin	R
capreomycin	R
PAS	S
linezolid	S
meropenem/clavulanic acid	S

TB control

- decreasing infectiousness of patients
- prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- prophylaxis for the non-infected
 - vaccination
 - prophylactic medication

Prevention of transmission in health care facilities

- patient management and staff practice
 - triage and separation
 - cough education
 - fast tracking care and diagnosis
- infrastructure
 - ventilation systems
 - negative pressure
 - size of OPD/wards vs patient volumes
- personal protective equipment
 - N95 respirators

Infection prevention for tuberculosis

- patient management and staff practice
 - triage and separation
 - cough education
 - fast tracking care and diagnosis
- infrastructure
 - ventilation systems
 - negative pressure
 - size of OPD/wards vs patient volumes
- personal protective equipment
 - N95 respirators

Goals

- separation to protect non-coughing patients
- cough education to protect patients in the coughing group
 - mix of TB infected patients (S, MDR, XDR, TDR)
 - HIV infected and uninfected

Risk assessment in specialised TB facilities in KZN

Challenges with triage

- at which point in the patient flow?
- what to do with (many) coughing patients?

over-crowding in OPD \leftarrow where? \leftarrow

Infection prevention for tuberculosis

- patient management and staff practice
 - triage and separation
 - cough education
 - fast tracking care and diagnosis
- infrastructure
 - ventilation systems
 - negative pressure
 - size of OPD/wards vs patient volumes
- personal protective equipment
 - N95 respirators

Challenges with environmental control

- building structure
 - -ventilation systems
 - ceiling height
 - -isolation wards
- overcrowding
 - -ward
 - OPD
- cough areas/booths

Waiting Areas

- rooms with rapid air changes (6-12/hr) (??dependent on number of people in waiting areas)
- and negative pressure

or

structures with roofs only

What about wards and other areas ?

airflow control in all areas with (potential) TB patients

Ventilation systems

• air changes

at least 6 changes per hour
 air flow

- controlled
- HEPA filtered
 - (Highly Effective Particulate Air filter)
- UV irradiated

Ventilation systems

- air changes
- air flow
 - controlled
 - HEPA filtered
 - UV irradiated

In most provincial hospitals

Ventilation systems

→ at least 6 chan ation per hour • Air flow - controlled - HEPA filterectioning for moval → recirculation - UV irradig notiti → kill of bacteria

UV irradiation

> 1 min

regulation of inflow and outflow

 \rightarrow outflow > inflow

most infectious patient in room with lowest pressure

An outbreak of multi-drug-resistant tuberculosis in a London teaching hospital

- J Hosp Infect 1998; 39(2):111-7
- Breathnach AS et al

MDR TB outbreak in Hospital Ward

- HIV –ve patient with drug susceptible TB
 - developed MDR-TB ? poor adherence to therapy
 - admitted to an isolation room in a ward with HIV-positive patients
- isolation room
 - at positive-pressure relative to the main ward
- MDR TB outbreak
 - 7 HIV-positive contacts developed MDR-TB
 - MTB isolates were indistinguishable by molecular typing

Prevention of transmission in health care facilities

- patient management and staff practice
 - triage and separation
 - cough education
 - fast tracking care and diagnosis
- infrastructure
 - ventilation systems
 - negative pressure
 - size of OPD/wards vs patient volumes
- personal protective equipment
 - N95 respirators

Reasons for failing of the filter

Challenges with personal protection

• adherence

- unpleasant for user
- unfriendly for patients

confusing information

- when to discard ?
- fit-testing
 - consistency in donning the mask
 - procurement system

TB control = prevention of transmission

- decreasing infectiousness of patients
- prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- prophylaxis for the non-infected part of the population
 - vaccination
 - prophylactic medication

Infection prevention outside health care facilities

- community education
 - household education/counseling
 - targeted group education
 - How ???

Can social interventions prevent tuberculosis?: the Papworth experiment (1918-1943) revisited.

- Am J Respir Crit Care Med 2012 Sep 1;186(5):442-9. doi: 10.1164/rccm.201201-00230C. Epub 2012 Jul 5
- Bhargava A et al.

- rationale
 - consensus on the need to address social determinants of tuberculosis for TB control
 - evidence based on interventions is lacking

- objectives
 - reanalyzed data from the sociomedical experiment performed at the Papworth Village Settlement in England
 - impact of stable employment and adequate housing and nutrition on the incidence of TB infection and disease in children living with parents with active TB was documented during 1918-1943

- social interventions including adequate nutrition
 - did not reduce TB transmission
 - did reduce the incidence of TB disease in children living with parents with active TB
 - the susceptible host
- results relevant today
 - prevention of TB in children of patients
 with active TB in our high-burden setting

Tuberculosis transmission to young children in a South African community: modelling household and community infection risks

- Clin Infect Dis.2010 Aug 15;51(4):401-8
- Wood R et al

Conclusions

- annual risk in preschool children
 - greatest if infectious residents in the home
 - substantial proportion of transmissions may occur from non resident adults
- benefits of increased ventilation
 - maximized when the period of infectivity is reduced
 - (prompt treatment reservoir/infected case)

Indoor Social Networks in a South African Township: Potential Contribution of Location to Tuberculosis Transmission

- PLoS One 2012; 7(6): e39246
- Wood R *et al*

Conclusions

- increasing numbers of social contacts occurred throughout
 - childhood, adolescence, and young adulthood
 - predominantly in school and public transport
- rapid increase in non-home socialization
 - parallels the increasing TB infection rates during childhood and young adulthood
- further studies of the environmental conditions
 - schools and public transport indicated

TB control = prevention of transmission

- decreasing infectiousness of patients
- prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- prophylaxis for the non-infected part of the population
 - vaccination (new vaccines many years before 1st one could be available)
 - antimicrobial prophylaxis

Back to basics

- A reservoir for the organism
- A susceptible host
- Transmission from one to the other
- each of these is a target where we can prevent infections from occurring

Back to basics

- The current epidemic in KZN is the result of:
 - a high density of TB transmitters in the population (massive reservoir)
 - a high density of highly TB
 susceptible host individuals in the population (the HIV infected)
 - ongoing transmission

Back to basics

- we need to address each of these
 - active, early case finding (reservoir)
 - >before patients become infectious
 - >before a productive cough develops
 - decreasing host susceptibility
 - >early ARV treatment
 - >socio economic factors nutrition
 - >? prophylaxis
 - ≻vaccines
 - transmission
 - >effective barrier between infected and non-infected
 - >difficult to achieve